

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 30 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

- **106.** The plague of tin is the :
 - (A) conversion of stannous to stannic
 - **(B)** conversion of white tin to grey tin
 - **(C)** emission of sound while bending a tin rod
 - (D) atmospheric oxidation of tin
- **107.** $H_2C_2O_4(B) \xrightarrow{\Delta} gas(A) + gas(B) + liquid(C).$

Gas (A) burns with a blue flame and is oxidised to gas (B)

Gas (A) + Cl₂
$$\longrightarrow$$
 (D) $\xrightarrow{NH_3, \Delta}$ (E)

A, B, C and E are:

- (A) CO_2 , CO, H_2O , $HCONH_2$
- **(B)** $CO, CO_2, COCl_2, HCONH_2$
- (C) $CO, CO_2, H_2O, NH_2CONH_2$
- (D) $CO, CO_2, H_2O, COCl_2$
- 108. Amphibole silicate structure has 'x' number of corner shared per SiO_4 tetrahedron. The value of 'x' is:
 - **(A)** 2
- **(B)** $2\frac{1}{2}$
- **(C)** 3
- **(D)** 4

- 109. The silicate anion in the mineral kinoite is a chain of three SiO_4 tetrahedral that share corners with adjacent tetrahedral. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules in a 1:1:1 ratio. Mineral is represented as:
 - (A) $CaCuSi_3O_{10} \cdot H_2O$

- **(B)** $CaCuSi_3O_{10} \cdot 2H_2O$
- (C) $Ca_2Cu_2Si_3O_{10} \cdot 2H_2O$
- (D) None of these
- **110.** BX $_3$ + NH $_3$ $\xrightarrow{R.T.}$ BX $_3 \cdot$ NH $_3$ + Heat of adduct formation (Δ H)

The numerical value of ΔH is found to be maximum for :

- **(A)** BF₃
- (**B**) BCl₃
- (C) BBr_3
- **(D)** BI₃

Paragraph for Questions 111 - 113

In each of the following questions two Statements are given as Statement-1 and Statement-2. Examine the statements carefully and answer the questions according to the instructions given below:

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- **(D)** Statement-1 is False, Statement-2 is True
- **111. Statement-1**: Al(OH)₃ is amphoteric in nature.
 - **Statement-2**: It cannot be used as an antacid.
- **112. Statement-1**: Between $SiCl_4$ and CCl_4 , only $SiCl_4$ reacts with water.
 - **Statement-2**: SiCl₄ is ionic and CCl₄ is covalent.
- 113. **Statement-1**: Pb^{4+} compounds are stronger oxidising agents than Sn^{4+} compounds.
 - **Statement-2**: The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.

*114. Consider the following reactions

$$CHF_3 \xrightarrow{\quad K_a \quad} CF_3^- + H^+ \quad ; \quad CHCl_3 \xrightarrow{\quad K_a' \quad} CCl_3^- + H^+$$

Then regarding given reactions which of the following statement(s) is/are correct :

- $\textbf{(A)} \hspace{1cm} K_a > K_a'$
- **(B)** CHF $_3$ acts as a stronger bronsted acid than CHCl $_3$
- (C) CCl_3^- is more stable than CF_3^-
- **(D)** CCl_3^- is weaker Lewis base than CF_3^-
- $\textbf{115.} \hspace{0.5cm} \textbf{Choose the correct order of } \ C-C \ \ bond \ length \ in \ the \ given \ compounds:$

- (A) Acetylene < ethylene < graphite < benzene < ethane
- (B) Acetylene < ethylene < benzene < graphite < ethane
- (C) Acetylene < graphite < ethylene < benzene < ethane
- (D) Acetylene < benzene < graphite < ethylene < ethane